

PII: S0040-4039(97)00885-X

Studies Towards the Synthesis of the Zaragozic Acids: Synthesis of the Bicyclic Acetal Core of Zaragozic Acid C.

Ian Paterson,* Klaus Feßner and M. Raymond V. Finlay

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Abstract: The bicyclic core 6 of zaragozic acid C (7) was prepared by the epoxide cyclisation reaction $21 \rightarrow 22 \rightarrow 15$. Acetal 15 was also obtained by acid-promoted rearrangement of the isomeric acetal 19. © 1997 Elsevier Science Ltd.

The zaragozic acids¹ (squalestatins²) are a novel family of fungal metabolites, which are potent inhibitors of squalene synthase and thus potential therapeutic agents for the treatment of hypercholesterolaemia. Synthetic interest in this unique group of natural products has been intense.^{3,4} As part of our own studies, we have recently described an epoxide cyclisation approach to constructing the bicyclic acetal core of the zaragozic acids.⁵ Notably, the transformation $1 \rightarrow 2$ (Scheme 1) proceeded under mild, acidic conditions, serving to convert an open-chain system into a model 2,8-dioxobicyclo[3.2.1]octane core. In contrast, the related epoxide 3 (bearing the correct oxygenation for the zaragozic acids with a truncated sidechain at C₁) gave the kinetic acetal 4 on acid treatment, which then rearranged to give the isomeric (and *undesired*) bicyclic acetal 5. Despite this apparent uncertainty over which bicyclic acetal would be obtained, we chose to next introduce the full sidechain for zaragozic acid C into 3. We now report that this modification indeed favours the *desired* epoxide cyclisation mode, thus enabling the synthesis of the bicyclic acetal 6, corresponding to an advanced intermediate for zaragozic acid C (7).

A novel asymmetric synthesis of the zaragozic acid C sidechain containing the C₄ and C₅ stereocentres was first performed (**Scheme 2**).⁶ Following the Myers' protocol,⁷ alkylation of the lithium enolate of the [1*S*, 2*S*]-pseudoephedrine amide **8** with benzyl bromide provided **9** in 88% yield with >95% ds. After a single recrystallisation, **9** was reduced with LiAl(OEt)₃H to give the enantiopure aldehyde **10**.⁷ A number of chiral allyl metal reagents were screened for the asymmetric allylation of **10**, the most efficient being Brown's *B*-allylbis(2-isocaranyl)borane⁸ which gave **11** in 63% yield with 97% ds. The alkene **11** was next converted into the sulfone **12** (72%) by the radical-mediated addition of thiophenol,⁹ using catalytic AIBN (PhMe, 90 °C), followed by sulfur oxidation¹⁰ with Oxone[®] in aqueous MeOH. Protection of the C₄' hydroxyl in **12** as the corresponding TBS ether (96%) completed the synthesis of the sidechain segment **13**.

Scheme 2: (a) LDA, LiCl, THF; BnBr, 0 °C, 20 min; (b) LiAl(OEt)₃H, hexane/THF, $-78 \rightarrow 0$ °C, 1 h; TFA, HCl, 20 °C, 5 min; (c) *B*-methoxybis(2-isocaranyl)borane, H₂C=CHCH₂MgBr, Et₂O; 10, -78 °C, 4 h; H₂O₂, NaOH, reflux, 16 h; (d) PhSH, cat AIBN, PhMe, 90 °C, 72 h; (e) Oxone, MeOH/H₂O, 20 °C, 4 h; (f) TBSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C, 20 min.

As shown in Scheme 3, two routes were explored for converting the previously reported⁵ aldehyde 14 into the bicyclic acetal 15; both involved the nucleophilic addition of 13 followed by controlled, stepwise oxygenation of the diene system. Treatment of 13 with *n*-BuLi in THF/Et₂O (5:1) at -78 °C, followed, in turn, by addition of the resulting α -lithiated sulfone to the aldehyde 14 and Swern oxidation provided the β -ketosulfones 16 in 95% yield. The reductive desulfonylation of the coupled product 16 was best achieved using 6% Na(Hg) in buffered MeOH/THF (5:1),¹¹ leading, after deprotection of the TES ether with HF•pyridine, to the ketone 17 in 64% yield.

Efforts were now focused on the controlled oxygenation of the diene system in **17**, followed by epoxide cyclisation to generate the required bicyclic acetal. Initial results for the Sharpless asymmetric dihydroxylation¹² on **17** were discouraging. Despite repeated attempts with enriched AD-mix- β (containing 4 mol% (DHQD)₂PHAL and 1 mol% K₂OsO₄•2H₂O), the reaction led only to decomposition. Instead of performing the oxidation in the original order of dihydroxylation followed by epoxidation,⁵ we therefore examined the hydroxyl-directed epoxidation at C₅ prior to osmylation of the trisubstituted alkene. In practice, the epoxidation of **17** with VO(acac)₂/TBHP¹³ in CH₂Cl₂ was accompanied by nucleophilic attack by the ketone carbonyl group,⁵ leading to clean formation of the acetal **18**⁶ in 76% yield. However, dihydroxylation of alkene **18** by AD-mix- β gave rise to an inseparable mixture of **19** and its diastereomer, 3,4-bisepi-**19**, in 77% yield with essentially no π -face selectivity. Nevertheless, treatment of this mixture with either CSA in CDCl₃ (20 °C, 24 h) or with PPTS in CDCl₃ (60 °C, 18 h) promoted rearrangement of the acetal skeleton, allowing the required zaragozic acid C bicyclic acetal **15** to be isolated in 35% overall yield from **18**.¹⁴ The structure and stereochemistry of **15** were firmly established by detailed 1-D and 2-D ¹H NMR experiments.⁶ In particular, ³*J*_{6,7} = 6.5 Hz and strong NOEs were observed between H₃, H₆ and H₇, as required by the zaragozic acid core structure.

Despite this gratifying result, the stereorandom nature of the dihydroxylation reaction was a cause for concern. Accordingly, attention was returned to the asymmetric dihydroxylation reaction of the β -hydroxyketone 17. Under optimised conditions using substantially more ligand (25 mol% (DHQD)₂PHAL and 5 mol% K₂OsO₄•2H₂O, 20 °C, 16 h), the AD reaction now provided the triol 20 in 54% yield. The

process proved to be highly stereoselective (>95% ds) and epoxidation of **20** was now examined. As in our earlier model work,⁵ epoxidation using VO(acac)₂/TBHP¹³ in CH₂Cl₂ delivered a single isomer **21** (78%) whose stereochemistry was confirmed by subsequent cyclisation studies. In contrast to the simpler ethyl ketone **3** examined earlier, which followed a different cyclisation mode leading to **5** (*cf.* Scheme **1**), the more highly substituted ketone **21** now underwent acid-promoted opening of the epoxide to generate the required 2,8-dioxobicyclo[3.2.1]octane ring system. Upon treatment of **21** with catalytic CSA in CDCl₃ (20 °C, 24 h), the bicyclic acetal **15** was obtained cleanly in 95% yield, presumably *via* **22**.¹⁵ This acetal product proved identical to that obtained by the epoxidation/dihydroxylation sequence. Finally, treatment of **15** with TBSCl and imidazole in CH₂Cl₂ led to the formation of the bicyclic acetal **6** (85%), corresponding to an advanced synthetic intermediate for zaragozic acid C (7).

Scheme 3: (*a*) 13, *n*-BuLi, THF / Et₂O (5:1), -78 °C, 1 h; 14, -40 °C, 70 min; (*b*) (COCl)₂, DMSO, CH₂Cl₂, -78 °C, 65 min; Et₃N, $\rightarrow 0$ °C, 40 min; (*c*) 6% Na(Hg), Na₂HPO₄, MeOH / THF (5:1), 20 °C, 2 h; (*d*) HF/py, py, THF, 20 °C, 4.5 h; (*e*) cat VO(acac)₂ (20 mol%), *t*-BuOOH, 20 °C, 90 min; (*f*) AD-mix-β [(DHQD)₂PHAL, K₂OsO₄•2H₂O], MeSO₂NH₂, *t*-BuOH / H₂O (1:1), 20 °C, 18 h; (*g*) PPTS, CDCl₃, 60 °C, 18 h; (*h*) CSA, CDCl₃, 20 °C, 24 h; (*i*) TBSCl, imidazole, DMAP, CH₂Cl₂, 20 °C, 3 h.

As we had proposed earlier, a crucial factor operating in directing acetal formation appears to be the steric demands of the C_1 sidechain.⁵ Large alkyl groups (as in 1 and 21) tend to favour the desired bicylic acetal core, whereas smaller groups (*e.g.* Et in 3) apparently favour isomeric acetal systems. Completion of the total synthesis of zaragozic acid C from 6 requires introduction of the ester sidechain at C_6 , adjustment of oxidation states to give the tricarboxylic acid and inversion of stereochemistry at the C_7 centre.

Acknowledgements: We thank the EPSRC (GR/J22696), the DFG (Postdoctoral Fellowship to KF) and Merck, Sharp & Dohme for support and Dr R. A. Ward for helpful discussions.

References and Notes

- (a) Dufresne, C.; Wilson, K. E.; Zink, D.; Smith, J.; Bergstrom, J. D.; Kurtz, M.; Rew, D.; Nallin, M.; Jenkins, R.; Bartizal, K.; Trainor, C.; Bills, G.; Meinz, M.; Huang, L.; Onishi, J.; Milligan, J.; Mojena, M.; Pelaez, F. *Tetrahedron* 1992, 48, 10221.
 (b) Santini, C.; Ball, R. G.; Berger, G. D. J. Org. Chem. 1994, 59, 2261, and references cited therein.
- (a) Dawson, M. J.; Farthing, J. E.; Marshall, P. S.; Middleton, R. F.; O'Neill, M. J.; Shuttleworth, A.; Stylli, C.; Tait, R. M.; Taylor, P. M.; Wildman, H. G.; Buss, A. D.; Langley, D.; Hayes, M. V. J. Antibiot. 1992, 45, 639. (b) Sidebottom, P. J.; Highcock, R. M.; Lane, S. J.; Procopiou, P. A.; Watson, N. S. J. Antibiot. 1992, 45, 648.
- 3. For a review of synthetic efforts towards the zaragozic acids/squalestatins, see: Nadin, A.; Nicolaou, K. C. Angew. Chem. Int. Ed. Engl. 1996, 35, 1622.
- For previous total syntheses of zaragozic acids, see: (a) Nicolaou, K. C.; Yue, E. W.; La Greca, S.; Nadin, A.; Yang, Z.; Leresche, J. E.; Tsuri, T.; Naniwa, Y.; De Riccardis, F. Chem. Eur. J. 1995, I, 467. (b) Carreira, E. M.; Du Bois, J. J. Am Chem. Soc. 1995, 1/7, 8106. (c) Evans, D. A.; Barrow, J. C.; Leighton, J. L.; Robichaud, A. J.; Sefkow, M. J. Am. Chem. Soc. 1994, 1/6, 12111. (d) Stoermer, D.; Caron, S.; Heathcock, C. H. J. Org. Chem. 1996, 61, 9115. (e) Caron, S.; Stoermer, D.; Mapp, A. K.; Heathcock, C. H. J. Org. Chem. 1996, 61, 9126.
- 5. Paterson, I.; Feßner, K.; Finlay, M. R. V.; Jacobs, M. F. Tetrahedron Lett. 1996, 37, 8803.
- All new compounds gave spectroscopic data in agreement with the assigned structures. Acetal 15 had $\left[\alpha \prod_{i=1}^{D} +34.8\right] (c \ 0.3, c)$ 6. CHCl₃); ¹H NMR δ(CDCl₃, 500 MHz, assigned by COSY and NOESY) 7.35-7.12 (20H, m, Ar-H), 4.94 (1H, dd, J = 8.0, 6.5 Hz, 6-CH), 4.67 (1H, AB d, J = 11.0 Hz, PhCH_AH_BO), 4.61 (1H, AB d, J = 11.0 Hz, PhCH_AH_BO), 4.50 (3H, m, PhCH₂O + $PhCH_AH_BO$), 4.40 (1H, AB d, J = 11.7 Hz, $PhCH_AH_BO$), 4.09 (1H, d, J = 6.4 Hz, 7-CH), 4.00 (1H, dd, J = 11.9, 10.3 Hz, 10.3 Hz 11-CH_AH_B), 3.97 (1H, dd, J = 5.2, 4.0 Hz, 3-CH), 3.81 (1H, d, J = 10.0 Hz, 9-CH_AH_B), 3.75 (2H, m, 10-CH_AH_B + 11-CH_AH_B), 3.60 (1H, br m, 4'-CH), 3.50 (1H, d, J = 9.9 Hz, 9-CH_AH_B), 3.47 (1H, partially obscured dd, J = 10.6, 5.4 Hz, 10- CH_{AHB} , 3.37 (1H, d, J = 8.1 Hz, 6-OH), 3.01 (1H, s, 4-OH), 3.00 (1H, partially obscured dd, J = 10.3, 4.1 Hz, 11-OH), 2.86 (1H, dd, J = 13.2, 3.8 Hz, 6'-CHAHB), 2.27 (1H, dd, J= 13.3, 10.6 Hz, 6'-CHAHB), 1.83 (3H, m, 5'-CH + 1'-CH2), 1.72-1.31 (4H, m, 2'-CH₂ + 3'-CH₂), 0.92 (9H, s, t-BuSi), 0.75 (3H, d, J = 6.8 Hz, 5'-Me), 0.07 (3H, s, MeSi), 0.03 (3H, s, MeSi). The 500 MHz ¹H-¹H NOESY spectrum of 15 indicated large nOe enhancements between H₆ and H₃, H₇ and H₃ and H₆ and H₇; ¹³C NMR δ(CDCl₃, 100.6 MHz) 141.9, 138.1, 137.6, 136.6, 129.1, 128.7, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 125.6, 108.2, 88.2, 82.0, 75.9, 75.3, 73.7, 73.5, 72.9, 71.9, 70.6, 69.6, 69.0, 61.4, 40.3, 38.8, 33.6, 33.2, 26.0, 20.0, 18.2, 13.7, -4.0, -4.2; HRMS (FAB+, NOBA) calcd for C49H66O9SiNa [M+Na]+ 849.4373, found 849.4449. Acetal 18 had $[\alpha]_{20}^{20}$ +44.5 (c 0.3, CHCl₃); ¹H NMR δ (CDCl₃, 500 MHz, assigned by COSY) 7.36-7.12 (20H, m, Ar-H), 6.07 (1H, dd, J =6.3, 6.3 Hz, C=CH), 4.74 (1H, AB d, J = 11.8 Hz, PhCH_AH_B), 4.59 (1H, AB d, J = 11.9 Hz, PhCH_AH_B), 4.48 (2H, s, PhCH₂O), 4.44 (2H, m, PhCH₂O), 4.30 (1H, d, J = 7.0 Hz, 8-CH_AH_B), 4.14 (2H, d, J = 6.3 Hz, 10-CH₂), 4.09 (1H, AB d, J = 11.4 Hz, 9-CH_AH_B), 4.05 (1H, AB d, J = 11.4 Hz, 9-CH_AH_B), 3.91 (1H, br dd, J = 8.9, 6.8 Hz, 6-CH), 3.58 (1H, br d, J = 11.4 Hz, 9-CH_AH_B), 4.05 (1H, br d, J = 11.4 Hz, 9-CH_AH_B), 3.91 (1H, br dd, J = 8.9, 6.8 Hz, 6-CH), 3.58 (1H, br d, J = 11.4 Hz, 9-CH_AH_B), 4.05 (1H, br dd, J = 11.4 Hz, 9-CH_AH_B), 4.05 (8.9 Hz, 6-OH), 3.55 (1H, br m, 4'-CH), 3.43 (1H, d, J = 6.9 Hz, 8-CH_AH_B), 3.22 (1H, d, J = 6.8 Hz, 7-CH), 2.85 (1H, dd, J = 13.4, 3.9 Hz, 6'-CH_AH_B), 2.26 (1H, dd, J = 13.4, 10.6 Hz, 6'-CH_AH_B), 1.79 (1H, m, 5'-CH), 1.64-1.18 (6H, m, 1'-CH₂ + 2'-CH₂ + 3'-CH₂), 0.92 (9H, s, t-BuSi), 0.74 (3H, d, J = 6.7 Hz, 5'-Me), 0.07 (3H, s, MeSi), 0.04 (3H, s, MeSi); ¹³C NMR δ (CDCl₃, 100.6 MHz) 141.9, 139.1, 137.0, 134.3, 129.1, 128.8, 128.6, 128.5, 128.4, 128.1, 127.8, 127.7, 127.6, 127.5, 108.1, 75.7, 73.6, 72.5, 70.0, 69.7, 67.8, 65.6, 64.4, 40.1, 38.8, 33.5, 31.2, 29.7, 26.0, 19.6, 18.2, 13.6, -4.0, -4.3; HRMS (FAB+, NOBA) calcd for C49H65O7Si [M+H]+ 793.4499, found 793.4498.
- 7. Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. J. Am. Chem. Soc. 1994, 116, 9361.
- 8. Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Racherla, U. S. J. Am. Chem. Soc. 1990, 112, 2389.
- 9. Fehr, C. Helv. Chem. Acta. 1983, 66, 2512.
- 10. Trost, B. M.; Curran, D. P. Tetrahedron Lett. 1981, 22, 1287.
- 11. Trost, B. M.; Arndt, H. C.; Strege, P. E.; Verhoeven, T. R. Tetrahedron Lett. 1976, 17, 3477.
- 12. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768.
- 13. Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136.
- 14. Several additional products were also formed in this reaction, presumably arising from alternative acetal systems available to the diastereomeric glycol in 3,4-bisepi-19.
- 15. However, we cannot rule out the possibility that the acetal 19 is formed rapidly from 21 which then rearranges under the reaction conditions to give 15.

(Received in UK 15 April 1997; accepted 2 May 1997)